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1.  Introduction

All advanced techniques for numerical solution of physical

fields contain special algorithms for automatic adaptivity of

discretization meshes. Their purpose is to reduce the error of

solution to the lowest possible level and they are applied at the

moment when local errors of solution are higher than the

acceptable tolerance. These errors defined as the differences

between the current numerical solution and exact solution are

usually caused by

• locally rougher or inappropriately structured mesh,

• presence of singular points,

• curvilinear boundaries or interfaces approximated by

polygonal lines, etc.

In all these cases, such errors must be identified in the course

of computation and appropriate measures have to be taken for

their fixing.



2.  Elements of adaptivity

Consider an equation

0Lf 

where L is a differential operator and f a function whose distribution

over some domain W is to be found. If f’ is its approximation

obtained by numerical solution of the above equation, the absolute

and percentage relative errors d and h are defined by the relations

',f fd   100 / .fh d

Other quantities that can be checked in this way are the norms.

Usually, one works with the following norms
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Unfortunately, the exact solution f is known only in very simple

analytically solvable cases. Moreover, there exists no general and

universal method that would provide a good estimation of the error

for an arbitrary partial differential equation.

Local errors of the solution can be estimated from higher

derivatives of the investigated quantity in the elements, but this

approach is complicated and not very practical. That is why it is

better to work with a reference solution fref instead, which is a more

accurate solution than the current solution f. Usually it is a solution

obtained on a finer mesh. An obvious disadvantage of this

approach to automatic adaptivity is its higher computational cost.

In the next paragraphs I will show the elements of adaptivity that

are implemented in our own codes Hermes and Agros. I will focus

attention on the 2D versions of both codes (where these elements

are on a very high level). Our team intensively works on adaptivity

in 3D, but the development and implementation of the

corresponding techniques will take several more years of intensive

work.



More than 8 years our group has been developing our own

code for numerical solution of sets of second-order partial

differential equations of general types. This code written mostly in

C++ consists of two parts: Hermes and Agros.

Hermes is a library of most advanced numerical algorithms for

monolithic and full adaptive solution of systems of generally

nonlinear and evolutionary partial differential equations based on

the finite element method of higher order of accuracy.

http://hpfem.org/hermes/

Agros is a powerful user interface serving for preprocessing

and postprocessing of the problems solved.

http://agros2d.org/

Both these codes are freely distributable under the GNU

General Public License. And both of them use the most advanced

adaptivity techniques.

3.  Codes Hermes and Agros3.  Codes Hermes and Agros
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The algorithms of automatic adaptivity implemented in 2D

Hermes and Agros are divided into the following groups:

• h-adaptivity, p-adaptivity, hp-adaptivity, handling with hanging

nodes,

• work with curved elements,

• combination of triangular and quadrilateral elements

(quadrilateral elements are advantageous, for example, in

subdomains with anisotropy).

The reference solution is understood as a solution calculated on

a more than twice finer mesh. Hermes and Agros work not only

with the maximum local error over the element, but also with its

distribution over it.



hp-adaptivity

Hermes2D works with elements up to the tenth order. Each

physical field can be solved on quite a different mesh that best

corresponds to its particulars. Special powerful higher-order

techniques of mapping are then used to avoid any numerical

errors in the process of assembly of the stiffness matrix.

In evolutionary processes every mesh can change in time, in

accordance with the real evolution of the corresponding physical

quantities.

There are no problems with the hanging nodes appearing along

the boundaries of subdomains whose elements have to be refined.

Usually the hanging nodes bring about a considerable increase of

the number of the degrees of freedom (DOFs). The code contains

higher-order techniques for respecting these nodes without any

need of an additional refinement of the external parts neighboring

with the refined subdomain.



Curved elements

Agros2D discretizes 2D domains using SW Triangle. The

corresponding input data for modeling curvilinear boundaries or

interfaces in Triangle are given by a series of points lying on this

line (together with the markers carrying information that these

points belong to such a line) while the output is represented by a

set of triangular elements. In the second step Agros2D repeats

analyzing the curved lines and when any of the newly generated

nodes approximating the curve does not lie on it, it is automatically

projected on the original arc. At the same time a special procedure

determines the corresponding angle a.
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Combination of triangles and quadrilaterals

This combination is used in the following two cases:

• existence of anisotropic domains (material anisotropy or field

anisotropy) in the definition area of the problem or

• domains with smooth distribution of the investigated field

quantity.

In both cases, application of this technique may significantly

reduce the number of DOFs.



4.  Illustrative examples

The first example is inspired by the solution of the Schrödinger

equation describing the interaction between two atoms. It can be

found in a benchmark example collection F. M. Mitchell, “A

Collection of 2D Elliptic Problems for Testing Adaptive Algorithms,

”NISTIR 7668, 2010, that serves for the comparison of capabilities

of various existing codes. The equation in the form
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is solved on a unit square, whose low left corner is at the origin of

the Cartesian coordinate system. Its particular analytical solution is

1
sinu
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and we shall consider the corresponding boundary conditions

along the circumference of the square. The solution oscillates near

the origin and the coefficient a is inversely proportional to the

number of oscillations. For a = 1/(10p) we obtain ten oscillations.



Mathematica 8.0 Comsol 3.5

Hermes2D + Agros2D

exact solution



Convergence rate



The second example is more universal and shows application of

the curvilinear elements, handling with a singular point, and

combination of triangular and quadrilateral elements. The singular

point means a point at which it is not possible to define the normal

and the gradient of the solution grows there over all limits.
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Original rougher mesh (white lines) and final mesh after

adaptivity (dark lines). Calculation using Agros2D, number of

DOFs 1977, relative error of solution h = 0.307 %.

The fine elements and hanging nodes were generated mostly in

the region of the peak of the conical electrode. The spherical

electrode is simulated by curvilinear elements, i.e., quite precisely

(and the distribution of electric field in its vicinity, therefore, is

modeled with a very high accuracy).



Value of the total electrostatic energy in the system as a function

of the number of DOFs.

Codes FEMM and QuickField only work with linear elements

without adaptivity and the results obviously converge very slowly.

Faster is the convergence in Comsol Multiphysics, mainly with

switched-on adaptivity. But this code does not support the

hanging nodes, so that much more elements are needed.



triangles - 1402 DOFs triangles + quadrilaterals

- 1186 DOFs

h < 1 %

Comparison of two types of meshes in Agros



5.  Conclusion

The methods of adaptivity described in the presentation and

implemented into our codes Agros and Hermes represent a

powerful tool whose application leads to significant savings in

DOFs in comparison with various available SW (by one order and

more) at the same or higher accuracy of the results.

Next work in the field will be aimed at the following items:

• further improvement of criteria for the choice of the h-adaptivity,

p-adaptivity and hp-adaptivity (in present versions of codes

Agros and Hermes they are based on the evaluation of the

distribution of the local error over the element),

• finding more effective criteria for introduction of quadrilaterals

into the mesh pattern in case that the current distribution is

smooth (a more reliable definition of “smoothness“, and

• implementation of elements of the goal-oriented adaptivity.



.... and finally:

Thank you for your kind attention !


